A new Nav1.7 sodium channel mutation I234T in a child with severe pain.

نویسندگان

  • Hye-Sook Ahn
  • Sulayman D Dib-Hajj
  • James J Cox
  • Lynda Tyrrell
  • Frances V Elmslie
  • Antonia A Clarke
  • Joost P H Drenth
  • C Geoffrey Woods
  • Stephen G Waxman
چکیده

Dominant gain-of-function mutations that hyperpolarize activation of the Na(v)1.7 sodium channel have been linked to inherited erythromelalgia (IEM), a disorder characterized by severe pain and redness in the feet and hands in response to mild warmth. Pharmacotherapy remains largely ineffective for IEM patients with cooling and avoidance of triggers being the most reliable methods to relieve pain. We now report a 5 year old patient with pain precipitated by warmth, together with redness in her hands and feet. Her pain episodes were first reported at 12 months, and by the age of 15-16 months were triggered by sitting as well as heat. Pain has been severe, inducing self-mutilation, with limited relief from drug treatment. Our analysis of the patient's genomic DNA identified a novel Na(v)1.7 mutation which replaces isoleucine 234 by threonine (I234T) within domain I/S4-S5 linker. Whole-cell voltage-clamp analysis shows a I234T-induced shift of -18 mV in the voltage-dependence of activation, accelerated time-to-peak, slowed deactivation and enhanced responses to slow ramp depolarizations, together with a -21 mV shift in the voltage-dependence of slow-inactivation. Our data show that I234T induces the largest activation shift for Na(v)1.7 mutations reported thus far. Although enhanced slow-inactivation may attenuate the gain-of-function of the I234T mutation, the shift in activation appears to be dominant, and is consistent with the severe pain symptoms reported in this patient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ranolazine on wild-type and mutant hNav1.7 channels and on DRG neuron excitability

BACKGROUND A direct role of sodium channels in pain has recently been confirmed by establishing a monogenic link between SCN9A, the gene which encodes sodium channel Nav1.7, and pain disorders in humans, with gain-of-function mutations causing severe pain syndromes, and loss-of-function mutations causing congenital indifference to pain. Expression of sodium channel Nav1.8 in DRG neurons has als...

متن کامل

Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief

INTRODUCTION Chronic pain is a massive clinical problem. We discuss the potential of subtype selective sodium channel blockers that may provide analgesia with limited side effects. AREAS COVERED Sodium channel subtypes have been linked to human pain syndromes through genetic studies. Gain of function mutations in Nav1.7, 1.8 and 1.9 can cause pain, whilst loss of function Nav1.7 mutations lea...

متن کامل

Nav1.7 is the predominant sodium channel in rodent olfactory sensory neurons

BACKGROUND Voltage-gated sodium channel Nav1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic neurons within the peripheral nervous system. Homozygous or compound heterozygous loss-of-function mutations in SCN9A, the gene which encodes Nav1.7, cause congenital insensitivity to pain (CIP) accompanied by anosmia. Global knock-out of Nav1.7 in mice is neonatal lethal rep...

متن کامل

Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7

Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects...

متن کامل

Erythromelalgia mutation L823R shifts activation and inactivation of threshold sodium channel Nav1.7 to hyperpolarized potentials.

Erythromelalgia (also termed erythermalgia) is a neuropathic pain syndrome, characterized by severe burning pain combined with redness in the extremities, triggered by mild warmth. The inherited form of erythromelalgia (IEM) has recently been linked to mutations in voltage-gated sodium channel Nav1.7, which is expressed in peripheral nociceptors. Here, we used whole-cell voltage-clamp recording...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of pain

دوره 14 9  شماره 

صفحات  -

تاریخ انتشار 2010